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Abstract

Regression equation modelling was used for the correlation of gas chromatographic relative retention times 7, of anabolic
steroids, stimulants and narcotics with their molecular characteristics in order to create a model for the prediction of 7.,
values of unanalysed molecules. Predicting chromatographic retention parameters is one of the main goals of the quantitative
structure—retention relationships (QSRR) methodology. To be performed, QSRR studies require two tools; a methodology
for the extraction of the structural characteristics and a statistical program for the correlation of these characteristics with the

chromatographic data.
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1. Introduction

Quantitative  structure-retention  relationships
(QSRR) [1] is one specialised branch of the quantita-
tive structure—activity relationships (QSAR) [2],
involved in chromatographic retention. The goals of
QSRR studies are the prediction of chromatographic
retention parameters for new solutes, the calculation
of the structural characteristics or properties (de-
scriptors) of the solutes, the elucidation of the
molecular mechanisms of a particular chromato-
graphic system and the evaluation of properties,
other than chromatographic, and activities of the
solutes. The application of QSRR studies in the field
of doping control is useful, because the International
Olympic Committee (IOC) accredited doping control
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laboratories [3] rely on chromatographic systems in
order to. analyse processed urine collected from
competing athletes.

The creation of a predictive QSRR model requires
that several steps are performed. Firstly, the availa-
bility of a chromatographic system with a sufficiently
large set of solutes and reliable data is required in
order for statistical analysis to be carried out. Fortu-
nately, chromatography can provide a great amount
of precise and reproducible data. If all chromato-
graphic conditions are kept constant (which is true),
then the solute molecule is the independent variable
and the retention parameter is the dependent vari-
able. Secondly, the molecules of the solutes should
be sketched in the computer using specialised soft-
ware in order to calculate solute structural descrip-
tors. Thirdly, the chromatographic data (dependent
variable) and the descriptors (independent variables)
are correlated and statistical models are created. This
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Fig. 1. Flow-chart of the procedure for a QSRR model generation.

last task is repeated until the creation of a model
with satisfactory statistics. In Fig. 1 the flow-chart of
the entire task of the model-building is presented.
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Fig. 2. Sample of the computation of a molecular connectivity
descriptor.

2. Methodology

Statistical models were created by our laboratory
using the QSRR methodology, and three of these
have been published [4,5]. These models refer to the
GC-MS analysis of steroids and gas chromatog-
raphy—nitrogen—phosphorus detection (GC-NPD)
analysis of stimulants and narcotics. The routine sets
of chromatographic data (relative retention time, #5)
of the doping substances were used as the first kind
of input data. The second kind of input data were the
structural descriptors of these substances. The
ADAPT software, created by Prof. P. Jurs and co-
workers at the Pennsylvania State University, PA,
USA, was used for the studies. The followed struc-
ture input procedure comprise the sketching of the
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molecules in the computer, the correction of the
molecules’ conformation and the calculation of their
descriptors. Sketching of molecules is performed in a
graphical two-dimensional environment and the
structures are saved as connection and distances

tables (ADAPT’s internal code).
After sketching, the next level of the structure

input information the conformational and
Table 1
Summary of the QSRR models concerned with doping analysis
Variable® Regression Standard error of Partial ¥

coefficient regression

coefficient

Regression model I for 57 stimulants and narcotics
DPSA 3 0.00714 0.00058 149.252
NBND 0.04369 0.00298 215.466
MOLC 8 —0.09395 0.01897 24.529
ve6C 4.58991 0.82314 31.093
SeC —2.06121 0.23663 75.873
ETOT 0.01676 0.00207 65.553
Intercept —0.12898 0.02771 21.660
R=0. 991, n=57 s=0.046 F(6, 50)=444.1
Regression model II for 20 stimulants
SRMX1 0.01396 0.00318 19.327
GEOM 5 0.00099 0.00013 55.527
S3p 0.09319 0.00900 107.227
WPSA 3 0.06142 0.00625 96.590
Intercept —0.08667 0.05505 2477
R=0982 n=20 s=0.027 F(4,15)=99.58
Regression model for 45 anabolic steroids
GEOM 1 0.02182 0.00183 142.861
MOMI 4 1.01677 0.17769 74.300
v4C —0.54379 0.06776 64.399
V5CH 2.40045 0.35070 46.851
S4P 0.12199 0.01428 72,991
S4PC -0.06117 0.01617 14.305
S7CH 1.74499 0.19919 76.742
S6CH —3.21262 0.39638 65.690
WTPT 3 0.02622 0.00331 62.714
Intercept —1.65865 0.13070 161.036

R=0991 n=45 s=0.027 F(9,35)=213.7

“DPSA3 and WPSA3 are electronic descriptors, which encode
information about polar intermolecular interactions. NBND is the
number of bonds. MOLCS, V6C, S6C, S3P, V4C, VS5CH, S4P,
S4PC, S7CH, S6CH and WTPT3 are molecular connectivity
descriptors. ETOT is an electronic descriptor, whose value is
calculated from the sum of energies of all the highest and lowest
occupied molecular orbitals. SRMX1 is an electronic descriptor
encoding orbital concentration. GEOMS and GEOM1 are geomet-
ric descriptors. MOMI4 is a geometric descriptor, which encodes
information about moments of inertia [4,5].

geometrical properties of the molecule. This task is
performed by molecular mechanics algorithms [6],
which minimise the strain energy of the molecule by
changing the atomic positions in a three-dimensional
environment. ADAPT software includes an MM2
algorithm for strain energy minimisation [7]. This
algorithm calculates the strain energy of a molecule,
taking into consideration the co-ordinates of each
atom. Then, successively, each atom’s coordinates
are changed following a predefined movement step
with calculation of strain energy changes, until an
acceptable minimum is reached. The better the result
achieved by the minimisation energy algorithm, the
better the quality of the information produced by the
algorithms which calculate the descriptors’ values.
Another significant molecular mechanics algorithm is
MOPAC [8].

The next step in the model building process, after
finishing the structure input, is the calculation of the
descriptors by the ADAPT software. Descriptors fall
into four classes; topological, geometrical, electronic
and physicochemical. Topological descriptors are
derived by the data included in the connection table
of the structure and encode such information as
number of atoms, number of bonds, number of rings,
molecular mass, substructure counts, molecular con-
nectivity, substructure environment and path descrip-
tors. The molecular connectivity [9] of a molecule is
a measure of the size and the degree of branching of
the molecule, based on the graph theory. A sample of
the computation of a connectivity descriptor is
presented in Fig. 2. The advantages of the topo-
logical descriptors is that they are easily computed
and have strong correlations with physicochemical
properties of the molecules. Geometrical descriptors,
which are used mainly to differentiate between
molecules with the same topological descriptors, are
derived from the three-dimensional molecular
models of the structures and include such infor-
mation as the principal moment of inertia, molecular
volume and surface area. Some three-dimensional
aspects of the structures can be captured by their
three orthogonal projections. Electronic descriptors,
which encode the electronic structure of the mole-
cule, are values that characterise the structure with
partial atomic charges, dipole moments, bond
strengths, etc. Physicochemical descriptors are values
such as the logarithm of the partition coefficient of a
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compound between water and 1-octanol, molar re-
fraction, molecular polarizability and others. For
each QSRR study more than one hundred descriptors
were calculated, from the most simple, such as the
molecular mass, the number of carbon atoms, etc., to
the more complicated, such as the electronic de-
scriptors which compute the o electron density,
interatomic distance, etc.

The next task, after the computation of the de-
scriptors, is the correlation of their values with the
chromatographic data and the construction of the
model. This task is performed by multiple linear
regression analysis. The statistical analysis comprises
several steps; reduction of the number of descriptors,
model generation, model evaluation and prediction
of new f; values. The reduction of the number of
descriptors is performed in order to eliminate de-
scriptors with overlapping, or minimal, information
and avoid their inclusion in the final model. De-
scriptors having insufficient variation (e.g. descriptor
values mostly identical), descriptors containing 90—
95% zero values and descriptors exhibiting high
pairwise correlations (e.g. from two descriptors with
95% correlated information, one is eliminated, taking
into consideration criteria such as chemical signifi-
cance, normal distribution, variance, etc.). Other
criteria for elimination of descriptors are the mul-
ticollinearities, i.e. high intercorrelations of infor-
mation between a descriptor and a set (linear combi-
nation) of descriptors. A multicollinearities test is
performed by multiple linear regression analysis.
Within a set of descriptors, multiple linear regression
equations are built, having one descriptor from the
set as the dependent variable and the remainder fo
the descriptors as independent variables. This pro-
cedure is repeated for all the descriptors in the data
set. The goal of this task is to predict which
descriptor information is considered as the dependent
variable based on the information provided by the
rest. After discarding those descriptors with high
correlation coefficients (e.g. 98%), the procedure is
repeated until the elimination of an adequate number
of descriptors has taken place. Another multicol-
linearities test is conducted by principal components
analysis. In a set of descriptors presented in the
multidimensional space, eigenanalysis is performed
in order to reduce the dimensionality of the space. In
a case where the difference between the initial and
the final dimensionality is significant, at least 95% of

the variance is sought in a reduced number of
descriptors, taking into consideration the dimen-
sionality of the space after the eigenanalysis. A third
multicollinearities test is performed by the applica-
tion of the Gram-Schmidt orthogonalization proce-
dure [10]. In this procedure, descriptors are also
treated as multidimensional vectors, where orthogon-
al vectors contain zero overlapping information,
because the projection of one descriptor onto the
other will be zero. The procedure of choosing the set
of descriptors with the least overlapping information
starts with the selection of the descriptor with the
highest correlation to the dependent variable, as the
initial basis vector. The next selected descriptor is
that with the largest projection angle to the initial
basis vector. The third descriptor selected is the most
orthogonal to the plane defined by the first two
descriptors, etc. This procedure continues until a
user-specified maximum descriptor number is
reached.

Once a refined descriptor pool has been identified,
regression analysis follows. Equations/models relat-
ing the structural properties to the ;. values are
developed with the form:

ler =Qota,x, +ax, tax,+ - (D

where a, is the intercept and g, represent the
coefficients of various descriptors, x,. The model is
defined in such a way that the residuals between the
observed 7y, values and the #,, values calculated by
the regression model are minimised. The procedure
is performed by selecting, from the pool, the appro-
priate descriptors in order to generate a robust model
with the best possible statistics. The following
forward selection and stepwise multiple linear re-
gression analysis procedure is applied [11,12]; the
most highly correlated descriptor comprises the first
independent variable, and the regression equation is
developed. For selecting the next descriptor to enter
into the model, a list with the partial correlation
coefficients of descriptors, as yet unentered in the
model, is examined. The descriptor with the largest
correlation coefficient is considered as the next to be
entered. The square of the partial T-statistic (F-
value) of the new descriptor is compared with a
predefined F-value (F-to-enter) and if it exceeds this
limit, then the particular descriptor is entered in the
equation. This procedure is repeated until no partial
F-values from descriptors outside the equation ex-
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ceed the F-to-enter value. Partial F-values of de-
scriptors already participating in the equation are
compared with a predefined F-to-delete, in order to
decide if any descriptor must be removed from the
equation (e.g., in a case where partial F-value <F-to-
delete). This procedure is applied to all the de-
scriptors of the final pool. After finishing the pro-
cedure of addition or deletion of variables, a new
model is generated, which is validated using the
following criteria; the correlation coefficient R, the
standard error, s, the overall F-value for analysis of
variance, the number of descriptors included in the
model, the jackknifed estimates (removing, succes-
sively, one substance from the data set and calculat-
ing the tRR from the new generated model), the
multicollinearities between these descriptors, using
the multiple linear regression procedure described
previously, the variance inflation factor (VIF) [13],
etc.

The residuals of the generated model can be
analysed to detect outliers, i.e. points with a negative
influence on the coefficients of the model. Plotting
the residuals can be used to judge the quality of the
fit or any distribution of them (from where in-
formation could be extracted) and seek for outliers in
order to delete them from the data set. For the
detection of outliers, several other tests can be used:
DFFITS, Cook’s distance, leverage values, studen-
tized residuals, standardised residuals, etc [11-13].

3. Results and discussion

Details about the predictive ability and the statis-
tics of the models generated by the QSRR studies on
anabolic steroids, stimulants and narcotics can be
found elsewhere [4,5]. These models and their
statistics are summarised briefly in Table 1.

ADAPT software was used for the entire workload
of the computations of these studies. ADAPT soft-
ware is an integrated tool for developing QSRR
studies, because it contains both routines for de-
scriptor generation and model construction. Several
studies have been performed in the past using this
software on a variety of prediction subjects; retention
of polychlorinated dibenzofurans [14], boiling points
[15], retention of polychlorinated biphenyls [16],
odor intensity relationships [17], retention of warfare
agents [18], nuclear magnetic resonance chemical

shift, using neural networks [19], etc. Neural net-
works’ methodology is an alternative of the regres-
sion analysis in the QSRR studies, but it has had less
success in the predictive ability of the systems [20],
because neural networks are more ‘‘sensitive” in
untrained cases of prediction for new structures,
compared to regression analysis.

MOLCONN-X software, by Kier and Hall, can be
used instead of ADAPT software for the computation
of topological descriptors. PCMODEL software,
running under the MS Windows environment, can be
used for determination of molecules’ strain energy
minimisation. Statistical computation can be per-
formed using many other statistical software pack-
ages, including MINITAB, SPSS, SAS, etc.

Topological descriptors can be used for the crea-
tion of prediction models, concerning molecules that
belong to homologous series [21]. In this case, the
computation of more complicated descriptors, e.g.
electronic or geometrical, in many cases seems to be
unnecessary. This is very helpful when the computa-
tion of other classes of descriptors is not possible.
Topological descriptors are easily computed, since
their computation does not require three-dimensional
sketching or strain energy minimisation. QSRR
studies based only on topological descriptors are
feasible for non-polar GC and reversed-phase HPLC
systems.

A question always put after a predictive QSRR
model has been generated, is if one can determine
chromatographic mechanisms from the kind of de-
scriptors included in the model. An answer to that
question is difficult to give, mainly for two reasons:
first, it is possible that several equations with similar
statistics can be generated in a QSRR study, includ-
ing different sets of variables (descriptors) and
second, in seeking a predictive model with the best
statistics, the transformation of descriptor values (e.g.
raised in powers, logarithms, etc.) [22] is allowed.
From such a transformed variable, a physical mean-
ing is even more difficult to extract. However, if the
objective of a QSRR study is the elucidation of the
chromatographic mechanisms, then a different ap-
proach is required [1].

The number and the homogeneity of the solutes
participating in a QSRR study is critical. A big
number of homogeneous solutes is a good starting
point for every QSRR study. As referred to previous-
ly, QSRR studies in an homologous series is much
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easier to perform than a study carried out in non-
homologous solutes. In the case of non-homologous
solutes, related solutes or solutes with common
substructures would facilitate the task. There is a
relationship, which should be maintained, between
the number of descriptors (variables) participating in
the model and the number of solutes (observations),
in order to avoid correlations. This is a rule of
thumb, stating that for every variable (descriptor) a
minimum of five observations should be included in
the data set [23]. This means that the bigger the
number of observations, the bigger the number of
descriptors that can be used and the bigger the
amount of variation of the data set explained by the
regression equation via the correlation coefficient R,
etc. Model statistics’ goals are summarised in the
following set: maximum R, maximum overall F-
value, minimum number of participating descriptors,
minimum standard error, minimum standard devia-
tion of the statistical coefficients and minimum
correlations and multicollinearities. To follow these
guidelines, the selection of F-to-enter and F-to-de-
lete values is crucial. Low F-to-enter values will
allow the entry of irrelevant descriptors into the
equation (a value of 3-4 is mostly recommended).
Similarly, a zero value of the F-to-delete means that
descriptors can never be removed from the equation.
The F-to-enter value should always be higher than
the F-to-delete value, because otherwise the same
descriptors would be added and deleted.

Concerning the prediction of 7,5 values using the
QSRR models, it is obvious that the structural
similarity between solutes of the data set and new
solutes is a limitation in the application of this
methodology.

4. Conclusions

QSRR studies have practical applications, which
would facilitate the standardisation of the IOC
accredited doping control laboratories around the
world, which was one of the life-works of Professor
Donike. Modelling of the (similar) chromatographic
systems of the doping control laboratories, would
provide the potential to predict ty, values, provide
better control of experimental results, and provide a
better understanding of the chromatographic systems,

etc., for new metabolites. An increase in the knowl-
edge of the molecular structure and mechanics will
improve the models’ performance and will result in a
wider application in the future.
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